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Abstract

In this paper, dynamic characteristics analysis of catenary and pantograph systems for a high-speed rail vehicle is carried

out. The catenary system is considered to be a beam model. The analysis of the catenary based on the finite element method

(FEM) is performed to develop the pantograph. The stiffness value can be obtained at each nodal point on the contact

wire. State sensitivity analysis was executed with respect to design variables considered by the pantograph system. The

pantograph of linear spring–mass–damper system is considered as a 3dof model using lumped parameters. Dynamic

modeling of the pantograph system is verified by actual experimental vibration data. To perform the sensitivity analysis,

our study was considered lift force effect of the pan-head occurring at high-speed runs. Also, a span length and static uplift

force were included into design variables. As a result, we could confirm that span length and plunger spring constant are

some of the important design variables of catenary and the pantograph systems.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

At present, the high-speed railway that is the next generation of transportation system is characterized by
high stability, high driving velocity, and ride comfort as compared to the other transportation systems. An
accompanying problem of the high speed of the railway is ensuring stable current collection. For stable
operation of a railway, the catenary must be supplied with stable electrical power through solid contact with
the pantograph. When the railway speed is increased, contact loss will occur between the pantograph and the
catenary due to the catenary stiffness. In addition, wear on the pantograph is going to grow as electrical shock
and damage may occur [1]. Therefore, research into understanding the current-collecting system’s dynamic
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

m1 mass of the pantograph frame
m2 mass of the pantograph plunger
m3 mass of the pantograph pan-head
c1 damping coefficient between the vehicle

body and the frame
c2 damping coefficient between the frame

and the plunger
c3 damping coefficient between the plunger

and the pan-head
k1 stiffness coefficient between the vehicle

body and the pantograph frame
k2 stiffness coefficient between the frame

and the plunger
k3 stiffness coefficient between the plunger

and the pan-head
L a span length
F1, F2, F3 static uplift force of the pantograph
FL1, FL2, FL3 lift force

y1 vertical displacement of the upper and
lower arm

y2 vertical displacement of the crossbar and
plunger

y3 vertical displacement of the pan-head
de
1, de

3 vertical displacement of the contact wire
and the messenger wire

de
2, de

4 angle of rotation of the contact wire and
the messenger wire

h length of one finite element of the wire
Kew element stiffness matrix of the contact

wire and the messenger wire
Ked element stiffness matrix of the dropper
Keb element stiffness matrix of the moving

bracket
Kea element stiffness matrix of the steady arm
K overall stiffness matrix of the catenary
d displacement vector of the contact wire
f force vector on the contact wire
k stiffness vector of the catenary
x horizontal position in the catenary span

J.-W. Kim et al. / Journal of Sound and Vibration 303 (2007) 405–427406
characteristics and the decreasing width of dynamic variation are needed. Progress has been made in recent
research assuring the ability of high-speed driving as the basic technology of a high-speed railway [2]. The
dynamic interaction of catenary and pantograph systems has been investigated extensively. Ockendon and
Taylor [3] described an approximate analytical formulation to determine contact force between a contact wire
and a pantograph. Manabe [4] conducted research on wave analyses to study the response between the
pantograph and the catenary with discrete support springs. Wu and Brennan [5] investigated the dynamic
relation between the catenary and the pantograph using finite element method (FEM). Vinayagalingam [6]
studied contact force variation and pan-head trajectory by using finite difference methods. Today’s situation is
that an active pantograph is proposed for more stable current collection through maximizing the ability of the
pantograph to follow the catenary [7–9].

To improve the performance of the pantograph, its dynamics should be considered more precisely before
applying an active system. Especially, many researchers trying to improve the system performance, have
suggested using sensitivity analysis as an efficient tool for checking variations in design variables based on its
dynamics. Vanderplaats and Arora [10,11] found that sensitivity information can be used as a design basis
when re-designing a system. Haug et al. [3] investigated dynamic sensitivity analysis which is utilized for
variation evaluation of mechanisms in the dynamic state. Jang and Han [12] devised a way to conduct dynamic
sensitivity analysis for studying state sensitivity information with respect to changes in design variables.
Sensitivity analysis about the pantograph system can be a useful tool to improve dynamic characteristics of a
pantograph.

In this study, the dynamic characteristics of a catenary system and pantograph supplying electrical power to
high-speed trains are investigated. The analytical model of a catenary and a pantograph is composed to
simulate the behavior of an actual system. To obtain the model of the catenary system for high-speed
operation, we perform the analysis of the catenary system using FEM. The pantograph system is assumed to
be a 3dof model using lumped parameters. The reliability of the dynamic model is verified by the comparison
of the excitation test with fast Fourier transform (FFT) of the actual system. State sensitivity analysis was
executed with respect to design variables of the pantograph system. Uplift force increased by aerodynamic lift
force affects displacement and contact forces occurring in between the catenary and the pantograph system
directly. Therefore, the lift force data acquired from experiments are utilized for sensitivity analysis. From
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results of the sensitivity analysis, it is established that design variable is more significant for dynamic
characteristics of pan-head at high speed.

2. Modeling of the catenary and the pantograph system

2.1. Finite element analysis of the catenary system

2.1.1. Components of the catenary system

A catenary system is an equipment installed overhead in order to supply electric power to a high-speed rail
vehicle and consists of contact wire, messenger wire, droppers, moving brackets and steady arms. Contact wire
is electric wire that directly contacts the pan-head of the pantograph and supplies electric power to the high-
speed rail vehicle. Messenger wire is installed to support contact wire from above and keep overall stiffness
uniform. A dropper is a cable that connects the contact wire to the messenger wire and maintains the contact
wire at a fixed height. A moving bracket is a structure that stretches out from the electric pole, supports the
messenger wire, and forms the beginning and the end of a span. A steady arm is installed to prevent uneven
wear of contact wire and pan-head caused by partial contact and maintains a zigzag shape. Fig. 1 shows the
structure of a simple catenary system.

2.1.2. Finite element analysis of the catenary system

Contact wire and messenger wire are modeled after a tensile beam to which constant tension is applied.
A dropper, a moving bracket and a steady arm are modeled after a spring with a mass at each end. An analysis
model structured for 10 spans of a catenary system can be expressed as shown in Fig. 2.

On the Gyeongbu high-speed railway, catenary systems with different characteristics are installed for
different sections. The most conspicuous difference is span length which ranges from 38 to 63m. The number
of droppers for a span varies from 6 to 9 depending on the span length. In this study, four cases of
representative span lengths, 40.5, 45, 49.5, and 63m, are modeled and analyzed, respectively. We obtain Fig. 3
by expressing a finite element of contact wire and messenger wire and having it represent the degree of freedom
Fig. 1. The structure of a simple catenary system of a high-speed rail vehicle.
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Fig. 2. Finite element model of 10 span catenary.

Fig. 3. Finite element of the wire.
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at each nodal point. A beam is a long, slender structural member generally subjected to transverse loading
that produces significant bending effects as opposed to twisting or axial effects. This bending deforma-
tion is represented as a transverse displacement and a rotation. Therefore, one element has 4 degree of
freedom.

The stiffness matrix for a finite element of contact wire and messenger wire is as follows:
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where h is the length of an element. Besides, the stiffness matrix for a finite element of droppers, moving
brackets and steady arms is as follows:

Ked ¼
kdh
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Keb ¼
kbh
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Kea ¼
kah
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The stiffness matrix for the whole catenary system is obtained from a combination of stiffness matrices for
different elements:

K ¼
X
ðKew;Ked;Keb;KeaÞ. (5)

Now we will attempt to obtain the vertical-direction stiffness value following the position of a catenary
system. The static equilibrium equation of a catenary system can be written as follows:

K d ¼ f , (6)

where d is the displacement vector of contact wire, and f the vector of external force applied to the contact
wire. By arranging Eq. (6) for displacement vector, we get the following equation:

d ¼ K�1 f . (7)

From Eq. (7), we set the f vector in such a manner that a constant force is applied toward the vertical upper
direction to a node on contact wire and calculate Eq. (7) to obtain the vertical upper-direction displacement at
the node. We get the displacement vector of contact wire by repeating this procedure from the beginning to the
end of a span. Here, by dividing the force f with the displacement vector, the upper-direction stiffness value at
each node is obtained. This relationship can be expressed as Eq. (8):

k ¼
f

d
. (8)

From this, we get stiffness values at different positions of a span in a catenary system, and these values are
periodically repeated following the adjacent span. Figs. 4–7 show stiffness values for a single span from those
obtained for different span lengths, respectively.

In order to simulate the stiffness values following the position of the catenary system as previously obtained
in conjunction with the pantograph, we can approximate as follows by expressing the stiffness values with a
continuous equivalent function [5,13]:

KðxÞ ¼ K0 1� a cos
2px

L

� �
, (9)

K0 ¼
Kmax þ Kmin

2
, (10)



ARTICLE IN PRESS

35 40 45 50 55 60 65 70 75
2100

2200

2300

2400

2500

2600

2700

2800

Position (node) 

S
ti

ff
n
es

s 
(N

/m
)

Fig. 4. Stiffness of the catenary (span length: 40.5m).
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Fig. 5. Stiffness of the catenary (span length: 45m).
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a ¼
Kmax � Kmin

Kmax þ Kmin
, (11)

where L is the the length of one span, Kmax the largest stiffness in a span, Kmin the smallest stiffness in a span.
When the pan-head contacts contact wire and moves at the speed of V, the stiffness value of the catenary

system with respect to time t can be expressed as follows [5,13]:

KðtÞ ¼ K0 1� a cos
2pV

L
t

� �
. (12)

Using Eq. (9), the four types of stiffness values of the catenary system as previously analyzed can be
expressed in Table 1. Fig. 8 is a graph that shows the equivalent functions of stiffness obtained here for a span,
respectively.
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Fig. 6. Stiffness of the catenary (span length: 49.5m).
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Fig. 7. Stiffness of the catenary (span length: 63m).

Table 1

Equivalent function of the stiffness of each span

L(m) K0 (N/M) a K(x)

40.5 2435.6 0.1256 2435.6 (1�0.1256 cos 0.155x)

45 2172 0.0823 2172 (1�0.0823 cos 0.14x)

49.5 2126.6 0.1247 2126.6 (1�0.1247 cos 0.127x)

63 1916.7 0.1776 1916.7 (1�0.1776 cos 0.1x)
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Such a stiffness function of a catenary system can be used for the analysis of a dynamic model for a
pantograph system. In this way, the dynamic characteristics of a pantograph system can be realized more
easily by realizing the behavior of a catenary system in a function.
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2.2. Modeling of the pantograph system

A pantograph system is a device that is installed on the roof of a power car running at a high speed of
350 km/h, takes electric power from the catenary, and supplies it to the main transformer of the power car. A
pantograph for a high-speed rail vehicle requires analysis and design with air resistance that may occur during
high-speed movement and other factors taken into consideration and needs to supply electric power stably by
securing high-quality contact with contact wire. Besides, due to the causes vehicle vibration, change in external
wind pressure, unevenness of elasticity on the catenary, stiffness variation at dropper connecting points, and
others, temporary loss of contact between the catenary and the pantograph may take place. In preparation for
such occasions, the pantograph system is designed to contact collection strips with the uplift force of about
70N by an air piston.

In this thesis, we performed modeling and sensitivity analysis on grand Plongeur unique (GPU)-type
pantographs installed on Korean-style high-speed rail vehicles. Its lower arm is connected to the base frame by
a shaft and its upper arm connects from the upper end of the lower arm to the plunger. The cross bar is
installed on the top of the plunger and supports the pan-head, which directly contacts the catenary and
receives electric power. Fig. 9 shows the structure of a GPU pantograph system.

Fig. 10 shows the dynamic modeling from the GPU pantograph.
In Fig. 10, the pantograph model is composed of a 3-lumped mass, a spring, a damper, a friction damper

between each mass, and the structure that supplies external force for each mass. The 3 dof pantograph
modeling is defined in Fig. 10. The equations of motion are as follows:

m3 €y3 � c3 _y2 � k3y2 þ c3 _y3 þ k3y3 ¼ F 3 þ FL3 � F ðtÞ, (13)

m2 €y2 � c2 _y1 � k2y1 þ ðc2 þ c3Þ _y2 þ ðk2 þ k3Þy2 � c3 _y3 � k3y3 ¼ F 2 þ FL2, (14)

m1 €y1 þ ðc1 þ c2Þ _y1 þ ðk1 þ k2Þy1 � c2 _y2 � k2y2 ¼ F1 þ F L1, (15)

where F1, F2 and F3 are static uplift forces. Also, FL1, FL2 and FL3 means the lift force. F(t) means the contact
force occurring in between the contact wire and the pantograph pan-head. The contact force is one of the most
important thing in analyzing dynamic characteristic of the catenary-pantograph system. It is related to
displacement of pan-head directly. From Eq. (12), the contact force is derived from the stiffness of the
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Fig. 9. GPU type pantograph.
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Fig. 10. Dynamic modeling of the pantograph.
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catenary system only. Using Eq. (12) the contact force is as follows:

F ðtÞ ¼ KðtÞy3 ¼ K0 1� a cos
2pV

L
t

� �
y3. (16)

Eq. (16) calculates contact force by varying as vehicle velocity changes. The contact force is also affected by
y3 from the catenary stiffness function. Eq. (13) is modified as follows:

m3 €y3 � c3 _y2 � k3y2 þ c3 _y3 þ ðk3 þ KðtÞÞy3 ¼ F 3 þ FL3. (17)
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Fig. 11. Pantograph vibration experiment.
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2.3. Verification of pantograph modeling

Fig. 11 shows the vibration experiment equipment which is mounted on the pantograph. The large disk has
a wave pattern through its radial direction and is driven to rotate in the contact condition with pan-head. The
more the rotating velocity of the large wavelet disk increases, the higher the input frequency of pan-head is.
Hence, continuous increase of rotating speed in the wavelet disk means sine sweep input to the pantograph.
The response of the pantograph to sine sweep input is measured through accelerometers in time function.
Because the acquired data is vibrational signal in linearly accelerated rotating speed, the magnitude per
rotating speed (frequency) of time function corresponds to magnitude per frequency of FFT.

Fig. 12 shows the result that compares the actual data of the excitation experiment with the simulation data.
As a result of simulation indicates, the natural frequency on the system is at the level of 10 rad/s.

That is significantly similar to the actual experimental result. Therefore, it is deemed to confirm the
propriety of linear 3 dof modeling on the pantograph that was proposed earlier.
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2.4. The effect of aerodynamic lift force

The high-speed rail vehicle runs at a high speed of up to 350 km/h and, in this case, there may be several
aerodynamic problems caused by the high speed. Therefore, the aerodynamic design of pantograph is very
important in order to secure stable collection capability. As the speed of the train increases under the
pantograph for a high-speed rail vehicle, the uplift force and noise increase as well due to the lift force. When
the aerodynamic lift force occurs, the part that is affected the most is the pan-head and, depending on the
formation, the uplift coefficient of both phases differs, while the noise is affected as well. Recently, a wind
tunnel test was performed in order to estimate the characteristics of the lift force and noise with a pantograph
system for a high-speed rail vehicle [14]. For measuring the aerodynamic lift force, the wind speed was
performed under 5 conditions (150, 200, 250, 300, and 350 km/h). Fig. 13 shows the result of fitting in
quadratic function for the aerodynamic lift force in speed to check the lift force coefficient.
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Fig. 13. The relation between wind speed and lift force.
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In general, the lift force and the wind speed are in a functional relationship, and may be expressed in the
following Eq. (18):

FL3 ¼ ð1:26554� 10�4Þx2 � 0:00769xþ 0:19851. (18)

In Eq. (18), FL3 means the lift force (kgf) operating to pan-head, x means the wind speed (km/h),
respectively. It can be obtained from Fig. 13. A simulation is made for the displacement and contact force of
the pan-head in terms of consideration given for lift force in Figs. 14 and 15 and the case of consideration not
given. As shown in Figs. 14 and 15, if the lift force is not considered, the displacement and contact force of the
pan-head shows almost consistent response, but if the aerodynamic lift force is considered, the displacement
and contact force of the pan-head is gradually increasing in the quadratic function form following the speed
increase. As such, the increase of uplift force by the lift force directly affect the displacement and contact force
occurring in between the catenary and the pantograph. So, in the event of performing the dynamic analysis, it
necessarily has to be considered.
3. State sensitivity analysis

The sensitivity analysis of the vibration system shows how much the design variable of the system affect the
vibration characteristics including displacement, speed, acceleration and the like. In addition, the size of
sensitivity displays the degree of sensitivity of design variables of structure to the required condition. In this
paper, the direct differentiation method is used to perform the sensitivity analysis [14]. Also, design variables
composed the pantograph system and a span length and static uplift force was regarded as all design variables.
By contemplating the factors that affect the displacement of the pan-head that arises when operating the high-
speed rail vehicle, it has a basis on the selection of design variable to minimize the vibration occurring in
between the catenary and the pantograph.
3.1. Sensitivity formulation

In order to perform sensitivity analysis, state sensitivity equations must be derived with respect to the design
variables at the initial stage. In this study, the state variables of the system are as follows:

z ¼ ½y1 _y1 y2 _y2 y3 _y3�
T, (19)
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where z is the state variable vector, y and _y are displacements and velocities of each mass, respectively. Design
variables of this system are selected to be the following:

b ¼ b1 b2 b3 b4 b5 b6 b7 b8½ �
T

¼ m1 m2 m3 c1 k2 k3 F1 L½ �
T. ð20Þ

The dynamic equations of motion for the pantograph system can be expressed in the following form:

_z ¼

_y1

1
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Fig. 16. The result of sensitivity analysis (about m1): (a) sensitivity results; (b) sensitivity results except design variable L.



ARTICLE IN PRESS
J.-W. Kim et al. / Journal of Sound and Vibration 303 (2007) 405–427418
This equation has the form of a first-order ordinary differential equation. In order to perform sensitivity
analysis, state sensitivity equations must be derived with respect to the design variables at the initial stage. A
general form of the first order differential sensitivity equations is

q_z
qb
¼

qf
qz
�
dz

db
þ

qf
qb

. (22)

This equation can be written in the following compact matrix form:

_zb ¼ fz � zb þ fb, (23)

where z 2 Rn, b 2 Rn, f 2 Rn, z 2 Rn�m, fz 2 Rn�n, and fb 2 R
n�m. n is the number of state variables and m is

the number of design variables. In this case, n is 6 and m is 8 from Eq. (21). zb is state sensitivity matrix with
respect to the design variables and _zb is the time derivative of the state sensitivity matrix. For linear differential
equations, fz can be expressed by system matrix A. From this idea, Eq. (23) can be re-written in the
following form:

_zb ¼ A � zb þ fb. (24)
Fig. 17. The result of sensitivity analysis (about m2): (a) sensitivity results; (b) sensitivity results except design variable L.
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The system matrix A is expressed as follows:

A ¼

0 1 0 0 0 0

�
k1 þ k2

m1
�

c1 þ c2

m1

k2

m1

c2

m1
0 0

0 0 0 1 0 0
k2

m2

c2

m2
�

k2 þ k3

m2
�

c2 þ c3

m2

k3

m2

c3

m2

0 0 0 0 0 1

0 0
k3

m3

c3

m3
�

k3 þ kðtÞ

m3
�

c3

m3

2
66666666666664

3
77777777777775

. (25)

Next, fb should be obtained from the last term of the state sensitivity analysis with respect to the design
variables; this term is expressed in the following matrix form:

fb ¼ fb1; fb2; fb3; fb4; fb5; fb6; fb7; fb8½ �6�8. (26)
Fig. 18. The result of sensitivity analysis (about m3): (a) sensitivity results; (b) sensitivity results except design variable L.
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Detailed derivations of the above are summarized in the appendix. In order to solve the dynamic and state
sensitivity equations of the system, Eqs. (21) and (24) are simultaneously integrated [15].
3.2. The result of sensitivity analysis

From the design variables c2, c3 and k1 values were all 0 that they were excluded from the sensitivity
analysis. The running speed of pantograph started from 0 s to increase consistently with the time to reach 100 s
at the highest speed of 400 km/h for a simulation. After calculating the sensitivity value for each speed on the
displacement of the pan-head, the difference of the maximum value and the minimum value are calculated.
Also, for the reliability of the sensitivity analysis result, the guaranty of linearity in each design variable range
has to be confirmed. Figs. 16–23 calculated the sensitivity on the displacement of pan-head by actually
changing each design variable for �5%–+5%. This result is presumed with the perturbation of 1% for each
design variable and is a result obtained through the normalizing process. We could show that the result of
Fig. 19. The result of sensitivity analysis (about c1): (a) sensitivity results; (b) sensitivity results except design variable L.
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Fig. 20. The result of sensitivity analysis (about k2): (a) sensitivity results; (b) sensitivity results except design variable L.

J.-W. Kim et al. / Journal of Sound and Vibration 303 (2007) 405–427 421
the sensitivity analysis can be relied upon within the �5%–+5% range on the given design variable.
In Figs. 16–23, (a) show the sensitivity about all design variables and (b) show the sensitivity about the rest
design variables except design variable L. As a result of sensitivity analysis, the sensitivity on the displacement
of pantograph pan-head showed the greatest value on the span length L. This means that the factor that
affects the greatest in the displacement of pantograph pan-head at high-speed runs is the span length. In design
variables composed the pantograph system, the sensitivity on the displacement of pantograph pan-head
showed the greatest value on the plunger spring constant k2. From the sensitivity analysis, we could confirm
that the displacement of pantograph pan-head is much more sensitive not so much design variables composed
the pantograph system as a span length.

3.3. Verification of simulation result

In this paper, the purpose is to study the factors that most affect the pan-head of the pantograph during the
operation of a high-speed rail vehicle and select the optimal design variable. As a result of sensitivity analysis,
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Fig. 21. The result of sensitivity analysis (about k3): (a) sensitivity results; (b) sensitivity results except design variable L.
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the span length (L) and the plunger spring constant (k2) are confirmed as the most sensitive design variables
for the pan-head displacement. Based on this result, when the design variable of each is actually changed for
�5%–+5%, the range of width of displacement occurring in the pan-head is shown in Fig. 24. As shown in
Fig. 20, when the span length (L) and the plunger spring constant (k2) were changed for �5%–+5%, the
change of the pan-head displacement was the greatest, and this is very consistent to the result of the sensitivity
analysis performed earlier.

4. Conclusions

In this paper, dynamic characteristics analysis of a catenary-pantograph system is performed. The catenary
system is analyzed by FEM. The contact and the messenger wire were modeled as beams with bending stiffness
and tension. Displacement of pan-head is the main factor for dynamic performance of pantograph, and it is
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Fig. 22. The result of sensitivity analysis (about F1): (a) sensitivity results; (b) sensitivity results except design variable L.
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related to contact force directly. So design variables that are related to vibration characteristics of pantograph
through sensitivity information are discussed.

The conclusions of this paper are as follows:
1.
 Using the FEM, stiffness value according to position of contact line in 1 span was calculated and this
approximated as periodic functions.
2.
 3 dof pantograph modeling is verified by experimental data obtained through vibration experi-
ments and confirmed that natural frequency of the catenary-pantograph system is at the level
of 10 rad/s.
3.
 As a result of sensitivity analysis, we now know that dominant design variables related to
dynamic characteristics of the catenary-pantograph system are a span length L and plunger spring
constant k2.
4.
 To minimize dynamic motion occurring at high-speed runs, the pantograph system insensibility to a span
length and aerodynamic lift force effect need to develop.
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Fig. 23. The result of sensitivity analysis (about L): (a) sensitivity results; (b) sensitivity results except design variable L.

Fig. 24. Difference of pan-head displacement about percent variation of design variables.
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A.1. Sensitivity formulations
Appendix A

Sensitivity functions for RHS terms of Eq. (26) are derived as follows with nine sensitivity
equations for each design variable obtained from partial derivative operation with respect to design
variables.

(1) For b1 ¼ m1

fb1 ¼

0

�
1

m2
1

f�ðk1 þ k2Þz1 � ðc1 þ c2Þz2 þ k2z3 þ c2z4 þ F1 þ FL1g

0

0

0

0

2
66666666664

3
77777777775
. (A.1)

(2) For b2 ¼ m2

fb2 ¼

0

0

0

�
1

m2
2

fk2z1 þ c2z2 � ðk2 þ k3Þz3 � ðc2 þ c3Þz4 þ k3z5 þ c3z6 þ F 2 þ FL2g

0

0

2
66666666664

3
77777777775
. (A.2)

(3) For b3 ¼ m3

fb3 ¼

0

0

0

0

0

�
1

m2
3

fk3z3 þ c3z4 � ðk3 þ kðtÞÞz5 � c3z6 þ F 3 þ FL3g

2
66666666664

3
77777777775
. (A.3)

(4) For b4 ¼ c1

fb4 ¼

0

�
z2

m1

0

0

0

0

2
6666666664

3
7777777775
. (A.4)
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(5) For b5 ¼ k2

fb5 ¼

0

�
z1

m1
þ

z3

m1

0
z1

m2
�

z3

m2

0 Mbdeno;

0

2
66666666664

3
77777777775
. (A.5)

(6) For b6 ¼ k3

fb6 ¼

0

0

0

�
z3

m2
þ

z5

m2

0
z3

m3
�

z5

m3

2
66666666664

3
77777777775
. (A.6)

(7) For b7 ¼ F1

fb7 ¼

0
1

m1

0

0

0

0

2
6666666664

3
7777777775
. (A.7)

(8) For b8 ¼ L

fb8 ¼

0

0

0

0

0
1

m3
a cos

2pV

L
t 2pV

1

L2

� �� �
z5

2
66666666664

3
77777777775
. (A.8)
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